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Abstract:
Purpose:
The protracted coronavirus disease (COVID-19) pandemic has caused an unprecedented global health, social, economic, and psychological crisis.
COVID-19 is transmitted via droplets, which include volatile organic compounds (VOCs) emitted by COVID-19 carriers. As a result, medical
healthcare workers interacting with COVID-19 patients are at a high risk of infection. In this study, we measured the concentration of total VOCs
(TVOCs) in the droplets of patients during conversations.

Methods:
Thirty patients aged 20–88 years were enrolled in this study. The amounts of VOCs, formaldehyde (HCHO), and carbon dioxide (CO2) as surrogate
parameters for the patient’s droplets were measured at a distance of 1 m from the patients under the following conditions: 1) no conversation with a
mask on, 2) conversation with a mask on, 3) conversation without a mask on, and 4) no conversation without a mask on.

Results:
The average concentrations of TVOCs (mg/m3), HCHO (mg/m3), and CO2 (ppm) were all the lowest before the masked conversation (1.79 ± 1.72,
0.25 ± 0.25, 1193 ± 516), increased during the masked conversation (1.99 ± 1.87, 0.29 ± 0.24, 1288 ± 555), were the highest during the unmasked
conversation (3.10 ± 1.86, 0.45 ± 0.28, 1705 ± 729), and decreased to baseline after the unmasked conversation (1.89 ± 1.88, 0.26 ± 0.27, 1191 ±
518, respectively). Variations in TVOC and HCHO concentrations were positively correlated with patient age (TVOC: r = 0.42, p = 0.019 and
HCHO: r = 0.47, p = 0.008).

Conclusion:
Wearing a mask reduced the VOC concentrations measured during conversations more than when a mask was not worn. Therefore, wearing a
mask can reduce the emission of airborne droplet-derived VOCs and thereby reduce the risk of transmission of unknown patient-derived infections.
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1. INTRODUCTION

The emergence of coronavirus disease (COVID-19) caused
by  severe  acute  respiratory  syndrome  coronavirus  2  (SARS-
CoV-2)  has  led  to  a  large  global  outbreak  and  major  public
health  and  governance  concerns.  According  to  the  World
Health  Organization  (WHO),  the  possible  routes  of
transmission  of  SARS-CoV-2  include  contact,  droplet,
airborne, fomite, fecal-oral, blood-borne, mother-to-child, and
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animal-to-human transmission [1, 2]. Previous studies on the
transmission  of  SARS-CoV-2  showed  that  the  virus  spreads
between people mainly via  respiratory droplets  via  sneezing,
coughing, and contact routes [3 - 10]. However, the possibility
of airborne transmission of COVID-19 alone without a carrier
is  low,  and  no  airborne  transmission  has  been  reported  in
75,465  COVID-19-positive  case  reports  in  China  [10].  In
addition,  the  polymerase  chain  reaction  (PCR)  test  did  not
detect  COVID-19  DNA  in  the  air  samples  surrounding
COVID-19-positive patients in isolation rooms in a Singapore
hospital  [11].  These  analyses  indicate  that  COVID-19  is
transmitted  primarily  by  direct  person-to-person  contact
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through  coughing,  droplets,  and  conversations.

To  date,  studies  have  demonstrated  that  droplets  from
patients talking in the examination room can float  up to 1 m
away [12].  Another study proved that  droplet  particles could
move  up  to  5  m  in  the  direction  of  airflow  [13].  Normal
breathing produces not only tiny droplets of water and air or
small particles but also gaseous particles [13]. These gaseous
particles  in  exhaled  air  mainly  contain  a  large  amount  of
oxygen  and  carbon  dioxide  as  well  as  volatile  organic
compounds (VOCs). The typical composition of exhaled breath
is  approximately  78%  nitrogen,  13%-16%  oxygen,  4%-5%
carbon dioxide, 4% water vapor, and potentially thousands of
VOCs with low molecular weights (less than 500 Da) [14, 15].
VOCs  are  organic  chemicals  that  readily  volatilize  in  the
atmosphere  at  normal  temperatures  and  pressures.  Specific
examples  of  VOCs  include  toluene,  benzene,
chlorofluorocarbons,  and dichloromethane,  which are  widely
used  in  daily  life  as  important  solvents  and  fuels  [16].
Formaldehyde and acetaldehyde are extremely volatile VOCs
and  are  classified  as  highly  volatile  organic  compounds
(VVOCs) [16]. VOCs and VVOCs are naturally present in the
air exhaled from a person's mouth [17]. A study on VOCs in
exhaled  air  detected  748  compounds  in  exhaled  air  samples
obtained from 115 healthy individuals [18]. Furthermore, 266
of  these  748  VOCs  were  detected  in  more  than  10%  of  the
individuals  [18].  The  VOCs  in  the  exhaled  breath  from  an
infected person can be inhaled into the lower respiratory tract
of nearby persons. However, the VOC concentrations emitted
during  conversation  and  breathing  are  not  well  understood.
Determination of the VOC concentrations in exhaled air may
be important because it can improve our understanding of the
dynamics  of  SARS-CoV-2  transmission.  Therefore,  in  this
study,  we  investigated  the  concentrations  of  VOCs.

2. METHODS

2.1. Research Design and Participants

The  current  study  was  performed  within  the  scope  of  a
prospective  and  non-randomized  design  trial.  This  was
approved  by  the  Ethics  Committee  of  Teikyo  University
(#Teirin  18-227)  and  performed  in  compliance  with  the
Declaration  of  Helsinki.  This  study  was  registered  in  the
University  Hospital  Medical  Information  Network  (UMIN)
Clinical Trials Registry (UMIN000039595). Thirty consecutive
patients (13 women and 17 men; mean age, 58.3 ± 19.3 years;
range,  20-88  years)  were  enrolled  from  an  ophthalmology
outpatient  clinic  of  Teikyo  University  Hospital  between
February 2020 and June 2020. All the patients provided written
informed consent before participating in the study.

2.2. The Concentration of VOCs

The measurements of the amount of VOCs were performed
during face-to-face examinations in the following four states:
(1) No conversation with a mask on, (2) conversation with a
mask  on,  (3)  conversation  without  a  mask  on,  and  (4)  no
conversation  without  a  mask  on.  The  concentrations  of  total
volatile organic compounds (TVOCs), formaldehyde (chemical

formula: HCHO), and carbon dioxide (chemical formula: CO2)
in  the  droplets  were  measured  as  surrogate  parameters.  An
interval  of  several  minutes  was  allowed  between  each
measurement.  The  TVOC,  HCHO,  and  CO2  concentrations
were measured using a portable detection instrument placed 1
meter  away  from  the  patient.  A  digital  air  quality  detector
(SMART SENSOR 5-in-1; KKmoon from Shenzhen Tomtop
Technology Co., Ltd, Shenzhen, Guangdong, China) was used
to measure VOCs concentration. The device was installed at a
distance of 1 m from the patients. The room had dimensions of
4 m × 3 m, and the height of the room was approximately 3 m.
Patients  sat  on  chairs  at  least  1  m  away  from  the  wall.  The
room  temperature  was  set  between  20-22°C  with  no  special
humidity  control.  The  measured  values  were  recorded  and
saved in Microsoft  Excel® (Microsoft  Office 365; Microsoft
Corporation, Redmond, WA).

2.3. Statistical Analysis

The mean values  among the  four  groups  were  compared
using the Tukey–Kramer multiple-comparison test and a one-
way analysis of variance. Pearson correlation coefficients were
calculated to determine the relationships among variables. A p-
value less than 0.05 was considered statistically significant.

3. RESULTS

The TVOC concentration  was  1.79  ±  1.72  mg/m3  before
the conversation with the mask on, 1.99 ± 1.87 mg/m3 during
the conversation with the mask on, 3.10 ± 1.86 mg/m3 during
the conversation without the mask on, and 1.89 ± 1.88 mg/m3

after the conversation without the mask on (Fig. 1). The HCHO
concentration  was  0.253  ±  0.252  mg/m3  before  the
conversation with the mask on, 0.288 ± 0.243 mg/m3 during the
conversation with the mask on, 0.453 ± 0.278 mg/m3 during the
conversation without  the mask on,  and 0.263 ± 0.268 mg/m3

after  the  conversation  without  the  mask  on  (Fig.  2).  The
concentration  of  CO2  was  1193  ±  516  ppm  before  the
conversation  with  the  mask  on,  1288  ±  555  ppm  during  the
conversation  with  the  mask  on,  1705  ±  729  ppm  during  the
conversation without the mask on, and 1191 ± 518 ppm after
the conversation without the mask on (Fig. 3).

The four groups showed significant differences in TVOC
(p  =  0.025),  HCHO  (p  =  0.017),  and  CO2  (p  =  0.003)
concentrations, and the highest values of TVOC, HCHO, and
CO2 concentrations were observed in the group without a mask
on during conversation (one-way analysis of variance and the
Tukey–Kramer multiple-comparison test).

Next, we calculated the differences in the concentration of
TVOC (variation in TVOC), HCHO (variation in HCHO), and
CO2 (variation in CO2) before the conversation with the mask
and  during  the  conversation  without  a  mask.  A  significant
correlation was observed between the variation in TVOC and
HCHO concentrations (r  = 0.974, p < 0.01),  TVOC and CO2

concentrations  (r  =  0.437,  p  =  0.016),  and  HCHO  and  CO2

concentrations (r = 0.407, p = 0.016; Pearson product-moment
correlation coefficient) (Fig. 4A-D).
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Fig. (1). Comparison of the concentrations of total volatile organic compounds (TVOC) under various conditions. (1) Before the conversation with
the mask on (Baseline), (2) during the conversation with the mask on (Talking with mask), (3) during the conversation without the mask on (Talking
without mask), and (4) after conversation without the mask on (Silent without mask). A one-way analysis of variance was used to compare the mean
values among the 4 groups.

Fig. (2). Comparison of formaldehyde (HCHO) concentrations under various conditions.

Fig. (3). Comparison of carbon dioxide (CO2) concentrations under various conditions.
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Fig. (4). Correlation of variations in TVOC, HCHO, and CO2 concentrations. The variations in concentration were calculated as the difference in the
concentration of TVOC, HCHO, or CO2 before the conversation with the mask on and during the conversation without a mask on. (A) The correlation
between TVOC and HCHO. (B) The correlation between TVOC and CO2. (C) The correlation between HCHO and CO2. (D) Three-dimensional
representation of the relationships among TVOC, HCHO, and CO2.

Variations in both TVOC and HCHO concentrations were
positively correlated with patient age (r = 0.42, p = 0.019 and r
=  0.47,  p  =  0.008,  respectively;  Pearson  product-moment
correlation coefficient) (Fig. 5A-B). However, CO2 levels did
not correlate with patient age (r = 0.02, p = 0.899) (Figure 5C).

4. DISCUSSION

To  our  knowledge,  this  study  is  the  first  to  report  the
concentration  of  gaseous  particles,  including  VOCs,  in  the
exhaled breath of patients in an ophthalmic outpatient clinic.
The major findings of this study are that the amount of gaseous
particles can be dramatically reduced by wearing a mask and
that  the  amount  of  TVOCs  and  HCHO  in  exhaled  breath
increases with age. These results indicated that wearing a mask
in  the  examination  room  may  prevent  VOC-derived  droplet
transmission between patients and doctors.

Our  results  showed  that  TVOC,  HCHO,  and  CO2  were
dispersed in significant amounts up to 1 m from the patient. In
general,  large  droplets  fall  to  the  ground  quickly,  whereas
smaller  droplets  travel  farther.  Moreover,  gaseous  particles
remain in the air for a long time. Specifically, particle size and

dispersal  distance  are  inversely  proportional.  According  to  a
study  on  the  relationship  between  particle  size  and  transport
distance, droplet particles of 1000, 100, 10, and 1 µm fall 1 m
away after 0.3, 3, 300, and 30,000 s, respectively [19, 20]. The
droplet  sizes  vary  from  0.1  to  1000  μm  [13,  21  -  23],  with
larger droplets being large enough to carry bacteria and viruses
[23].  The  average  initial  velocity  of  coughing  and  breathing
immediately after exiting the mouth is approximately 1-22 m/s
[22, 24 - 26]. These exhaled droplets are transported by cough
or exhalation jets in the first stage and dispersed by the airflow
in the room in the second stage [13].  A computer simulation
study investigating the effect of ventilation rate on droplets and
social distance showed that sneezing or coughing at an initial
velocity of 20 m/s can cause particles or droplets to travel more
than 3 m in 40 s [13]. Furthermore, sneeze propagation analysis
showed  that  the  maximum  dispersal  area  was  4.84  m
downstream,  1.13  meters  wide,  and  1.82  meters  horizontally
[13]. These results suggested that a social distance of at least 5
m  instead  of  the  generally  recommended  2  m  is  more
appropriate  as  a  practical  condition  under  environmental
ventilation  [19,  20,  27].
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Fig. (5). Correlation between patient age and variations in TVOC (A), HCHO (B), and CO2 (C) concentrations.

Human exhaled breath contains thousands of metabolites
and VOCs derived from microorganisms present in the human
respiratory  tract  and  internal  organs  [28].  Pathogenic  and
symbiotic bacteria with humans and viruses of the microbiota
can  produce  VOCs  of  complex  chemical  origin.  Microbial-
derived VOCs have also been implicated in the transmission of
pathogens  and  the  initiation  of  diseases  [28].  Our  results
showed that patient-derived TVOCs could be dispersed at least
1 m away. These facts indicate that viruses attached to gaseous
particles have sufficient potential to be transferred from person
to person.

Virus transmission via VOCs can be better understood in
reference to the airborne dynamics of the influenza virus and
severe acute respiratory syndrome (SARS) coronavirus, which
are  representative  infectious  viruses.  Many  studies  have
demonstrated  that  infectious  particles  with  attached  viable
influenza  can  be  detected  in  air  samples  collected  from
hospitals  and  medical  health  centers  [29,  30].  SARS
coronavirus  has  also  been  detected  in  air  samples  obtained
from rooms in which SARS patients were hospitalized [31]. In
general, infectious influenza virus and SARS coronavirus can
survive in the air for several hours to days [32, 33]. According
to a study by the National Institute of Allergy and Infectious
Diseases, the COVID-19 virus has been experimentally proven

to  remain  infectious  for  three  hours  in  airborne  aerosols  in
enclosed  spaces  [34].  Additionally,  coronaviruses  remain
infectious in the environment for up to nine days, according to
a review of 22 studies on SARS and Middle East respiratory
syndrome  (MERS)  [32].  In  contrast,  several  studies  have
reported that COVID-19 DNA was not detected in air samples
near COVID-19-positive patients [10, 11]. The results of these
studies do not prove that the COVID-19 virus exists in the air
without  carriers,  but  it  is  quite  possible  that  the  infectious
COVID-19  virus  is  still  alive  and  floating  in  the  air  using
VOC-dominated gaseous particles as carriers.

The differences in TVOC, HCHO, or CO2 concentrations
before and during the conversation may reflect the amount of
droplets  released  from the  patient's  mouth.  Interestingly,  the
concentrations of TVOCs and HCHO increased with age. On
the  other  hand,  the  CO2  concentration  did  not  correlate  with
age.  Correlation  analysis  of  gas  particles  showed  a  strong
correlation between TVOC and HCHO concentrations, while
CO2  concentrations  did  not  correlate  with  TVOC  or  HCHO
concentrations. HCHO is a metabolic intermediate essential for
cellular  metabolism  and  is  produced  in  the  human  body.
HCHO  is  produced  in  the  body  during  the  metabolism  of
serine, glycine, methionine, and choline [35]. Factors that can
alter the concentration of HCHO and VOCs in exhaled breath

y = 0.0219x + 0.0359
R² = 0.1803

-1.0

0.0

1.0

2.0

3.0

4.0

5.0

0 20 40 60 80 100V
a
ri
a
ti
o
n
 i
n
 T

V
O

C
 (

m
g
/m

3
)

Age (years)

y = 0.0036x - 0.0073
R² = 0.2251

-0.2

0.0

0.2

0.4

0.6

0.8

0 20 40 60 80 100V
a
ri
a
ti
o
n
 i
n

H
C

H
O

 (
m

g
/m

3
)

Age (years)

y = 0.3023x + 494.06
R² = 0.0006

0

200

400

600

800

1,000

1,200

1,400

0 20 40 60 80 100

V
a

ri
a

ti
o
n

 i
n

 C
O

2
(p

p
m

)

Age (years)

(A) (B) 

(C) 



6   The Open Ophthalmology Journal, 2023, Volume 17 Ito et al.

include aging, diet, disease, smoking, and alcohol consumption
[18, 36 - 40]. As HCHO is classified as a VOC with fairly high
volatility, the concentration of HCHO probably occurs in the
exhaled  air  and  is  linked  to  the  TVOC  concentration  [41].
However,  the generation and internal metabolism of CO2  are
fundamentally different from those of HCHO and TVOCs [42].
In our previous study, oral droplets in patients decreased with
age  [12].  The  concentration  of  CO2  in  the  exhaled  breath  is
probably  strongly  influenced  by  the  lung  capacity  of  the
patient.  Respiratory function gradually decreases with age in
adults [43]. Furthermore, CO2 is abundant in the atmosphere;
therefore,  fluctuations  in  exhaled  CO2  concentration  can  be
ignored. Therefore, in the present study, the effect of aging on
the changes in CO2 emissions may have been minimal.

This study had several limitations. First, in this study, the
gaseous particles were measured only at a site 1 m away from
the  patient  where  the  readings  were  stable.  Second,  in  this
study,  all  patients  wore  their  own  disposable  masks  and,
therefore,  did  not  use  uniform masks.  Third,  there  are  many
types of  VOCs;  however,  we only measured TVOC, HCHO,
and  CO2  levels.  Fourth,  this  portable  measuring  device  can
only measure the total concentration of all types of VOCs.

CONCLUSION

We found that  TVOCs,  HCHO, and CO2  were generated
from  the  patients’  mouths  during  conversation  and  could  be
prevented by wearing a mask. Wearing a mask is the simplest
and most powerful tool for protecting patients and healthcare
workers from unknown viruses and pathogens in the air.

LIST OF ABBREVIATIONS

VOCs = Volatile Organic Compounds

TVOCs = Total VOCs
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