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Abstract:

Glaucoma, a leading cause of irreversible blindness worldwide, presents substantial challenges in clinical diagnosis
and long-term management due to its often insidious early progression and the irreversible nature of late-stage optic
nerve damage. However, rapid advancements in artificial intelligence technologies, particularly in machine learning,
deep learning, and large language models, are transforming ophthalmic practice. Al is now being extensively applied
across the spectrum of glaucoma care, from screening and precise diagnosis to optimizing treatment and supporting
long-term patient management. This review systematically examines the latest applications of Al in glaucoma,
highlighting multidimensional innovations. These applications span a wide range, including sophisticated image
analysis, the identification of novel molecular biomarkers, prediction of treatment response, and advanced surgical
planning. The paper also discusses key challenges and future development directions of these technologies, aiming to
provide new insights for glaucoma management.
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1. INTRODUCTION

Glaucoma, characterized by distinctive optic nerve
atrophy and visual field defects, often presents asympto-
matically in its early stages, leading to severe visual
impairment as it progresses [1, 2]. Currently, reducing
intraocular pressure (IOP) remains the most definitive and
controllable treatment strategy [3, 4]. However, clinical
practice has shown that disease progression can still occur
even at target IOP levels, necessitating novel therapeutic
approaches beyond IOP control [5]. Further complicating
glaucoma management are the subjectivity of diagnosis, the
resource-intensive nature of screening methods, and
challenges with long-term patient adherence to treatment
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[6-8]. These inherent complexities underscore the critical
need for advanced tools to improve early detection,
diagnosis, and personalized management.

In recent years, rapid advancements in artificial
intelligence (AI) have offered new perspectives for
glaucoma management [9, 10]. AI can be understood as the
ability of computers or robots to reproduce human
intelligence through software and algorithms. Machine
learning (ML), a subfield of Al, learns patterns from data for
applications such as medical image analysis [11, 12]. Deep
learning (DL), another important branch of AI, uses
multilayered neural networks to automatically extract
hierarchical features and identify complex information from
large datasets, such as medical images or extensive clinical
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records [13, 14]. Large language models (LLMs) process
human language, excelling at extracting clinical information
from unstructured text such as electronic health records
(EHRs) and supporting multimodal data analysis (e.g.,
combining imaging and text information) [15, 16].
Additionally, LLMs can simplify patient education through
natural language interaction, enhance professional literacy,
and assist clinicians with literature retrieval and treatment
planning [17, 18].

The integration of these AI technologies is poised to
improve diagnostic accuracy, optimize treatment decisions,
predict disease progression, and enhance patient engage-
ment and adherence. This review details the applications of
these AI technologies in glaucoma management, high-
lighting their potential to transform care from an
experience-driven approach to data-driven precision
medicine, thereby offering new avenues for early diagnosis,
treatment, and individualized intervention.

Tang et al.

2. APPLICATIONS OF Al
MANAGEMENT

Ophthalmology offers significant advantages for Al
applications (Table 1). It relies heavily on various imaging
technologies, such as fundus photography and optical
coherence tomography (OCT), which AI can analyze in
depth to assist clinicians in the early screening and
diagnosis of glaucoma [19, 20]. The inherent data-rich
environment of ophthalmology, characterized by the
extensive use of high-resolution imaging, provides a fertile
foundation for the development and application of Al
algorithms. This fundamental advantage is a primary reason
why AI has achieved such widespread and impactful
integration within this specialty, setting the stage for its
diverse applications in glaucoma management (Fig. 1) [21].

IN GLAUCOMA

Table 1. Examples of Al applications in glaucoma management.

Application Area Data Type Al Model Specific Role Related Research
CNNs Detection of early GON Liu et al. [22]
DL Predict referable GON Phene et al. [23]
Fundus Photograph y CNNs Predict the risk of glaucoma development. Thakur et al. [27]
ViTs Classification of glaucoma Tohye et al. [26]
Early Sc?enlng CNNs Discover new glaucoma-related genetic loci Han et al. [29], Alipanahi et al. [30]
an
Detection of ChatGPT-4 Detection of glaucoma AlRyalat et al. [32]
Glaucoma OCT PointNet Detection of glaucoma Thiéry et al. [24]
3D CNNs Detection of glaucoma Noury et al [25]
Molecu]l)a;rtfenetlc ML Identify key candidate genes. Dai et al. [28]
Clinical Cases ChatGPT Detection of glaucoma Delsoz et al. [31]
gl.aucon}a Cup-to-disc ratio retinlA Diagnosis of suspected glaucoma Camacho et al. [33]
iagnosis
0CT LSTM Predict glaucoma progression Mandal et al. [38]
GTNs Identify visual field progression. Hou et al. [39]
Siamese Neural . o ) .
Predicting - Network Identify rapid visual field progression Mohammadzadeh et al. [40]
Glaucon_la Visual Field Al-driven dashboard Predict glaucoma progression Yousefi et al. [41]
Progression . Convolutiona 1 LSTM . . .
clinical data Predict glaucoma progression Dixit et al. [42]
Network
EHRs ChatGPT-4 Accuracy in predlcpng conversion of ocular Huang et al. [43]
hypertension to glaucoma
Predict trabeculectomy outcomes Banna et al. [46]
EHRs Random Forest Model - -
Predict glaucoma surgery failure. Barry et al. [47]
Anterior Segment OCT| Classification Tree Predict filtering surgery outcomes. Agnifili et al. [48]
Guiding i ) Differentiate the filtration bleb function after
Glaucoma Slit Lamp Images Residual Network trabeculectomy Mastropasqu a et al. [49]
Treatment Clinical Cases ChatGTP Predict optimal surgical approach Carla et al. [52]
Identify potential therapeutic targets and search
Molecular Databases LLMs for Tu et al. [56]
possible drug
- - - candidates -
Glaucoma EHRs and Imaging LLMs Serve as a glaucoma “health advisor Babhir et al. [62]
Chronic Disease Self-reported Data XGBoost Assess high-risk glaucoma patients Ravindranath et al. [66]
Managemen t EHRs CNNs Identify high-risk glaucoma patients Ravindranath et al. [67]
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Fig.(1). Applications of Al in glaucoma management.

2.1. AI for Early Screening and Detection of
Glaucoma

Early screening and detection are cornerstones of
glaucoma management, and Al plays a crucial role in this
process, primarily through image analysis and molecular
genetic data mining. In fundus photography-based
detection, DL techniques, especially convolutional neural
networks (CNNs), effectively identify glaucomatous optic
neuropathy (GON) from fundus images. Liu et al. reported
that CNNs achieved an AUC of 0.996 in detecting GON,
demonstrating high sensitivity and specificity [22].
Similarly, Phene et al. utilized a DL model to analyze
fundus photographs from primary care settings and
predict referable GON patients with an AUC of 0.945,
exhibiting higher sensitivity and comparable specificity to
glaucoma specialists [23].

Al is also increasingly applied to OCT analysis. DL
models can effectively identify glaucoma by analyzing
retinal nerve fiber layer (RNFL) thickness, optic disc
structure, and OCT angiography data. Thiéry et al. showed
that DL models such as PointNet achieved an AUC of 0.95
for glaucoma diagnosis based on optic nerve OCT images,
indicating high accuracy [24]. Noury et al. used 3D CNNs
to analyze optic nerve OCT from different datasets and
consistently demonstrated high accuracy in glaucoma
identification [25]. In addition, emerging architectures like
Vision Transformers (ViTs) show promising applications in

Al for Early Screening and
Detection of Glaucoma

Al for Improving Glaucoma
Diagnostic Accuracy

Al for Predicting Glaucoma
Progression

Al for Guding Glaucoma
[reatment

Al in Chronic Glaucoma
Management

glaucoma management. Tohye et al. reported an accuracy
of 93%, significantly outperforming conventional methods
[26].

These Al systems exhibit a remarkable capacity to
identify subtle structural changes that are often
imperceptible to the human eye. Beyond detection, they
also help predict the risk of glaucoma development,
enabling truly early identification. As shown in Thakur’s
research, their DL model achieved an AUC of 0.77 in
predicting glaucoma development 4 to 7 years before onset
and an AUC of 0.88 in predicting development 1 to 3 years
prior to onset [27].

Al further demonstrates immense potential in molecular
genetic data analysis. ML algorithms have successfully
analyzed RNA sequencing data, identifying key candidate
genes associated with glaucoma, such as ENO2, NAMPT,
and ADH1C [28]. Furthermore, researchers have advanced
large-scale genome-wide association studies through DL-
assisted phenotyping of fundus images (e.g., quantifying the
vertical cup-to-disc ratio). As shown in research by Han [29]
and Alipanahi et al [30], Al models aided in discovering
multiple new genetic loci related to optic disc morphology
and glaucoma susceptibility, providing crucial insights for
unraveling disease pathogenesis and identifying novel
biomarkers.

LLMs are also increasingly applied in glaucoma
detection. They can analyze text information from EHRs
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and, when combined with image recognition systems, can
assist in interpreting fundus photographs, visual field tests,
and OCT images for early identification of glaucoma. One
study reported that ChatGPT achieved 72.7% accuracy in
diagnosing glaucoma from detailed clinical cases,
occasionally outperforming senior ophthalmology residents
[31]. Another study based on ChatGPT-4 achieved a
diagnostic accuracy of 90% [32].

The application of AI in glaucoma management is
shifting the model from “passive diagnosis” to “active
warning” by identifying high-risk individuals and predicting
disease risk, thereby establishing a strong foundation for
early intervention.

2.2, Al for Improving Glaucoma Diagnostic Accuracy

Enhancing diagnostic accuracy is a core component of
glaucoma management, and Al models play a significant
role in improving both the precision and efficiency of
glaucoma diagnosis. A comparative study demonstrated
that the AI tool retinlA outperformed ophthalmology
residents in diagnosing suspected glaucoma and in cup-to-
disc ratio estimation [33].

Crucially, the study also emphasized that a synergistic
approach combining Al assessment with clinician
judgment yields higher sensitivity in glaucoma diagnosis
compared to either method alone. This finding highlights a
central role of Al in medicine [34]: it serves as a powerful
assistive tool, providing objective, consistent, and accurate
analyses to augment—rather than replace—human
expertise. This is particularly beneficial for clinicians with
less experience or those working in high-intensity
environments [35].

Furthermore, the continuous optimization and
increasing accessibility of Al offer new opportunities for
clinicians in resource-limited primary care settings,
enabling them to diagnose glaucoma more efficiently and
accurately [36]. This ability of Al to bridge knowledge and
resource gaps effectively democratizes access to high-level
diagnostic capabilities that might otherwise be
concentrated in specialized centers, thereby improving
patient outcomes in underserved areas.

2.3. Al for Predicting Glaucoma Progression

Predicting disease progression is a critical aspect of
glaucoma management. In recent years, Al technologies,
including complex architectures such as Recurrent Neural
Networks (RNNs) and transformer models, have excelled
at analyzing longitudinal data from OCT and visual field
examinations, enabling relatively accurate predictions of
disease progression and trajectory [37].

Long Short-Term Memory (LSTM) networks, a type of
RNN, can differentiate whether RNFL thinning observed
on OCT is due to glaucoma progression or age-related
changes. Mandal et al. [38] reported that this model
achieved a diagnostic efficacy of AUC 0.498 in identifying
such changes. Gated Transformer Networks (GTNSs)
demonstrate significant advantages in predicting visual
field damage based on OCT; a study by Hou et al. showed
an AUC of 0.97 [39]. Siamese Neural Networks, primarily
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used for comparing paired data, can predict visual field
progression by analyzing optic disc images and baseline
RNFL thickness. In a study by Mohammadzadeh et al., this
Al model achieved an AUC of 0.911 in identifying rapid
visual field progression [40].

To further enhance clinical utility, Al-driven
dashboards are being developed to provide physicians
with intuitive visual representations of visual field
progression. Research by Yousefi et al. supports their high
sensitivity and specificity in predicting disease progression
[41]. Additionally, Al models that combine clinical data
(such as cup-to-disc ratio, central corneal thickness, and
intraocular pressure) with visual field information have
shown strong predictive accuracy. In a study by Dixit,
their predictive performance reached an AUC of 0.89-0.93
[42].

LLMs uniquely process patient text information,
simulating the thought process of experienced clinicians
by integrating imaging, functional assessments, and
medical symptoms to help identify potential glaucoma
risks [43]. Combining LLM-driven text analysis with DL-
driven image analysis enables the development of
multimodal AI models, contributing to a more
comprehensive and detailed diagnostic and prognostic
evaluation system [37].

The application of these AI models in predicting
glaucoma progression will further drive the transformation
of glaucoma management from a “reactive treatment”
approach to a “proactive intervention” model, laying a
solid foundation for optimizing long-term patient
management strategies and improving quality-of-life
outcomes.

2.4. Al for Guiding Glaucoma Treatment

Beyond screening, detection, diagnosis, and
prediction, Al is widely applied in glaucoma treatment. It
guides treatment decisions, predicts treatment responses,
accelerates drug discovery, and even improves surgical
precision, thereby advancing glaucoma management
towards more personalized and efficient directions.

2.4.1. AI for Predicting Treatment Response

Determining the most suitable treatment plan for each
patient is a key aspect of glaucoma management [44].
Currently, many Al models under development can predict
glaucoma treatment responses by analyzing diverse data
sources (e.g., EHRs, OCT, visual fields, and IOP) [45].
Several ML models are also used to predict outcomes of
glaucoma filtering surgery. For instance, Banna et al. [46]
found that random forest models achieved an AUC of 0.74
in predicting trabeculectomy outcomes, while Barry et al.
[47] demonstrated their superior performance in
predicting glaucoma surgery failure.

Additionally, AI can support surgical prognosis by
analyzing specific anatomical features. For example, Agnifili
et al [48]. predicted filtering surgery outcomes by
classifying conjunctival stromal thickness measured by
anterior segment OCT using decision tree analysis,
achieving an AUC of 0.784. Mastropasqua et al [49]



Artificial Intelligence in Glaucoma Management

assessed the function of filtration blebs after trabecu-
lectomy using ResNet to analyze slit-lamp examination
images, achieving an accuracy of 74%. These advancements
indicate that AI can support prognostic assessment in
glaucoma surgery, helping optimize treatment choices and
facilitate the development of personalized glaucoma
treatment plans.

2.4.2. AI for Guiding Treatment Decisions

LLMs are capable of processing complex text and
identifying key patient information from EHRs, thus
gradually becoming important auxiliary tools in developing
treatment plans and clinical decisions [50, 51]. For
example, ChatGPT predicts the optimal surgical approach
for patients by analyzing clinical cases, achieving an
accuracy of 78% and often demonstrating predictive
ability comparable to glaucoma experts [52]. Furthermore,
LLMs can serve as dynamic knowledge bases, providing
the latest medical evidence to support evidence-based
medicine decisions, helping doctors stay updated with
rapidly evolving treatment perspectives. As “clinical co-
pilots,” these AI models can integrate vast amounts of
patient clinical data with the latest medical knowledge to
assist clinicians in making complex glaucoma treatment
decisions [53, 54].

2.4.3. Al for Developing New Therapies

Al also holds promising prospects in new drug
development, capable of discovering novel drugs for
glaucoma [55]. AI models such as LLMs and graph neural
networks can rapidly analyze vast molecular databases,
predict intermolecular interactions, identify potential
therapeutic targets, and search for possible drug
candidates. A typical example involves AI screening
compounds that target receptor-interacting protein kinase 3
(RIPK3), an enzyme that mediates necroptosis of retinal
ganglion cells (RGCs). With AI, Researchers identified
HG9-91-01 as a promising drug candidate, which showed
protective effects on RGCs in preclinical studies [56]. This
undoubtedly shortens drug screening time and reduces
costs, which 1is particularly crucial for finding new
neuroprotective therapies related to glaucoma.

2.4.4. AI for Optimizing Surgical Procedures

Currently, the application of Al in ophthalmic surgery is
still in its early stages and is primarily focused on
optimizing surgical procedures through robotic-assisted
technology [57, 58]. Robotic platforms specifically designed
for ophthalmic microsurgery, such as the “Steady Hand”
system and the “Intraocular Robotic Interventional Surgical
System (IRISS),” can minimize hand tremors and enable
more precise manipulations, thereby improving surgical
safety and effectiveness [59, 60]. The use of these systems
supports the broader adoption of minimally invasive
glaucoma surgeries (MIGS), which require a high degree of
dexterity. Integrating AI with these robotic platforms is
expected to further refine surgical techniques and optimize
surgical outcomes.

Additionally, Al can serve as an important auxiliary tool
during surgery. Ahuja et al. [61] demonstrated that

integrating AI with imaging tools such as fundus
photography and OCT provides real-time, high-resolution
image analysis and guidance for surgeons, greatly
enhancing surgical safety.

2.5. Al in Chronic Glaucoma Management

In recent years, Al systems such as LLMs and chatbots
have increasingly assumed the role of “health advisors” for
glaucoma patients [51, 54, 62]. They simplify complex
medical literature, extract key information, and make
intricate medical knowledge more accessible to patients
with varying levels of health literacy. Furthermore,
platforms like ChatGPT, Gemini, and Bing Al provide
patients with basic glaucoma information, explanations of
medical terminology, and overviews of potential treatment
options through interactive Q&A sessions. They can also
generate personalized educational materials and tailored
medical consultations. The use of these Al tools enhances
the efficiency of doctor-patient communication and
improves patient adherence, enabling patients to play a
more active role in their own care.

However, caution is warranted with these “health
advisors,” as research indicates notable variability in their
accuracy, completeness, and readability [63]. Studies
suggest that patient education materials from professional
organizations such as the American Academy of
Ophthalmology (AAQO) exhibit higher accuracy and
readability compared to responses generated by Al tools
like ChatGPT [64, 65].

Al models also play an important role in glaucoma risk
assessment by assisting in the identification of high-risk
populations. The XGBoost model [66] achieved an AUC of
0.890 in assessing glaucoma risk based on self-reported
data, while a one-dimensional CNN model [67] achieved
an AUC of 0.863 in accurately identifying glaucoma
patients using EHRs, demonstrating strong predictive
performance.

The introduction of Al into glaucoma patient
management is reshaping the traditional two-party doctor-
patient relationship into a more complex three-party
relationship involving doctors, patients, and Al. This shift
requires clinicians to develop new communication
strategies to help patients understand and appropriately
integrate Al-generated information, ensuring that AI
enhances the therapeutic relationship rather than
complicating it.

3. CHALLENGES IN AI APPLICATION

While the application of Al in glaucoma management
holds vast promise, it also faces several challenges,
including issues related to data quality, model trans-
parency, interpretability, and ethical considerations.
Actively and comprehensively addressing these challenges
is essential to fully leverage the potential of these
technologies.

Developing robust Al models requires large quantities of
high-quality, diverse datasets, yet limited data and poor
data quality remain significant obstacles [68, 69]. For
instance, in prospective hospital studies with limited
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glaucoma subjects, small datasets can lead to “overfitting,”
wherein models over-adapt to training data and perform
inaccurately on new data. Additionally, variations across
populations, imaging equipment, and acquisition protocols
increase data heterogeneity, meaning that AI models
trained on data from a specific institution or population
often struggle to maintain consistent performance in
different environments. Therefore, rigorous clinical
validation using diverse, multi-center datasets is imperative
to enhance model generalizability.

Moreover, many advanced AI models, particularly
complex DL models, are difficult for clinicians to fully
understand and trust due to their “black box” nature [70].
The development of explainable AI (XAI) techniques, such
as Shapley Additive Explanations (SHAP), aims to improve
model transparency and interpretability, but their
practical applicability and effectiveness in clinical settings
still require further validation [71]. Additionally, LLMs
may exhibit “hallucinations,” generating information that
appears plausible but is incorrect, which poses significant
risks in clinical applications [72, 73]. Therefore, providing
accurate training data and rigorously validating Al-
generated information are essential to prevent the
dissemination of wrong or harmful advice.

With respect to ethics, Al tools may heighten the risk
of exposing sensitive patient information, making strict
adherence to data privacy regulations crucial during their
use [74-76]. Accountability is also a key concern, requiring
clear delineation of responsibility when AI systems
contribute to patient harm: Is it the AI vendor who built
the algorithm, the clinician who used the tool and acted on
its output, or the healthcare institution that deployed the
AI? Establishing clear accountability mechanisms is
essential for building trust and ensuring patient safety
[77]. Furthermore, ensuring that Al tools perform fairly
across diverse populations is critical for promoting
equitable access to Al-driven healthcare innovations and
reducing existing health disparities.

Given the current limitations of artificial
intelligence—including potential biases, the “black box”
nature of certain models, and the possibility of errors such
as hallucinations in large language models—maintaining a
“human-in-the-loop” approach is not merely a transitional
phase but an ethical and practical necessity. In this model,
clinicians oversee Al-generated outputs, evaluate
recommendations, and ultimately make clinical decisions.
This oversight serves as a crucial safeguard against risks
associated with Al errors, thereby fostering responsible
innovation and strengthening trust in emerging Al
technologies.

CONCLUSION

Al is profoundly reshaping glaucoma management. Its
exceptional performance in image recognition, disease
prediction, and personalized intervention provides
powerful support for clinical decision-making, patient
education, and long-term management, while also opening
new avenues for novel drug discovery and treatment
optimization. The application of AI models is poised to
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transform glaucoma management from traditional
“passive diagnosis” to “active early warning,” fostering a
more predictive, precise, and accessible diagnostic and
therapeutic paradigm.

Future development will focus on building multimodal
Al systems by integrating diverse data—including imaging,
functional assessments, genomics, EHRs, and patient self-
reports—to achieve multi-dimensional modeling and
dynamic tracking of individual patient conditions.

As Al advances, the role of ophthalmologists will also
evolve—from traditional independent clinicians to Al-
assisted comprehensive decision-makers. Future clinical
practice will emphasize physicians’ critical interpretation
of Al outputs, integration of complex clinical scenarios,
and humanistic care in doctor-patient communication. This
“human-machine collaboration” model will enhance the
safety and effectiveness of diagnosis and treatment while
enriching the medical profession with new dimensions.

In conclusion, the integration of AI is ushering in a
new era of glaucoma management. Only by consistently
advancing technological innovation with a rigorous
scientific attitude, prudent ethical principles, and a
clinically oriented perspective can Al be truly transformed
into a powerful driving force for improving the entire
continuum of glaucoma care. Future glaucoma
management will be data-driven, patient-centered, and
technology-supported, steadily progressing toward more
precise, efficient, and personalized approaches.
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