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Abstract:
Glaucoma, a leading cause of irreversible blindness worldwide, presents substantial challenges in clinical diagnosis
and long-term management due to its often insidious early progression and the irreversible nature of late-stage optic
nerve damage. However, rapid advancements in artificial intelligence technologies, particularly in machine learning,
deep learning, and large language models, are transforming ophthalmic practice. AI is now being extensively applied
across the spectrum of glaucoma care, from screening and precise diagnosis to optimizing treatment and supporting
long-term  patient  management.  This  review  systematically  examines  the  latest  applications  of  AI  in  glaucoma,
highlighting  multidimensional  innovations.  These  applications  span  a  wide  range,  including  sophisticated  image
analysis, the identification of novel molecular biomarkers, prediction of treatment response, and advanced surgical
planning. The paper also discusses key challenges and future development directions of these technologies, aiming to
provide new insights for glaucoma management.
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1. INTRODUCTION
Glaucoma,  characterized  by  distinctive  optic  nerve

atrophy  and  visual  field  defects,  often  presents  asympto-
matically  in  its  early  stages,  leading  to  severe  visual
impairment  as  it  progresses  [1,  2].  Currently,  reducing
intraocular pressure (IOP) remains the most definitive and
controllable  treatment  strategy  [3,  4].  However,  clinical
practice has shown that disease progression can still occur
even  at  target  IOP levels,  necessitating  novel  therapeutic
approaches  beyond  IOP  control  [5].  Further  complicating
glaucoma management are the subjectivity of diagnosis, the
resource-intensive  nature  of  screening  methods,  and
challenges with long-term patient adherence to treatment

[6-8].  These  inherent  complexities  underscore  the  critical
need  for  advanced  tools  to  improve  early  detection,
diagnosis,  and  personalized  management.

In  recent  years,  rapid  advancements  in  artificial
intelligence  (AI)  have  offered  new  perspectives  for
glaucoma management [9, 10]. AI can be understood as the
ability  of  computers  or  robots  to  reproduce  human
intelligence  through  software  and  algorithms.  Machine
learning (ML), a subfield of AI, learns patterns from data for
applications such as medical image analysis [11, 12]. Deep
learning  (DL),  another  important  branch  of  AI,  uses
multilayered  neural  networks  to  automatically  extract
hierarchical features and identify complex information from
large datasets, such as medical images or extensive clinical

Published: December 03, 2025

https://openophthalmologyjournal.com/
https://orcid.org/0009-0004-0090-7339
https://orcid.org/0000-0003-2194-6375
https://creativecommons.org/licenses/by/4.0/legalcode
mailto:dangyalong@haust.edu.cn
mailto:yalong.dang@gmail.com
http://dx.doi.org/10.2174/0118743641430437251130165439
http://crossmark.crossref.org/dialog/?doi=10.2174/0118743641430437251130165439&domain=pdf
https://creativecommons.org/licenses/by/4.0/
mailto:reprints@benthamscience.net
https://openophthalmologyjournal.com/


2   The Open Ophthalmology Journal, 2025, Vol. 19 Tang et al.

records  [13,  14].  Large  language  models  (LLMs)  process
human language, excelling at extracting clinical information
from  unstructured  text  such  as  electronic  health  records
(EHRs)  and  supporting  multimodal  data  analysis  (e.g.,
combining  imaging  and  text  information)  [15,  16].
Additionally, LLMs can simplify patient education through
natural language interaction, enhance professional literacy,
and assist clinicians with literature retrieval and treatment
planning [17, 18].

The  integration  of  these  AI  technologies  is  poised  to
improve diagnostic accuracy, optimize treatment decisions,
predict  disease progression,  and enhance patient engage-
ment and adherence. This review details the applications of
these  AI  technologies  in  glaucoma  management,  high-
lighting  their  potential  to  transform  care  from  an
experience-driven  approach  to  data-driven  precision
medicine, thereby offering new avenues for early diagnosis,
treatment, and individualized intervention.

2.  APPLICATIONS  OF  AI  IN  GLAUCOMA
MANAGEMENT

Ophthalmology  offers  significant  advantages  for  AI
applications (Table 1). It relies heavily on various imaging
technologies,  such  as  fundus  photography  and  optical
coherence  tomography  (OCT),  which  AI  can  analyze  in
depth  to  assist  clinicians  in  the  early  screening  and
diagnosis  of  glaucoma  [19,  20].  The  inherent  data-rich
environment  of  ophthalmology,  characterized  by  the
extensive use of high-resolution imaging, provides a fertile
foundation  for  the  development  and  application  of  AI
algorithms. This fundamental advantage is a primary reason
why  AI  has  achieved  such  widespread  and  impactful
integration  within  this  specialty,  setting  the  stage  for  its
diverse applications in glaucoma management (Fig. 1) [21].

Table 1. Examples of AI applications in glaucoma management.

Application Area Data Type AI Model Specific Role Related Research

Early Screening
and

Detection of
Glaucoma

Fundus Photograph y

CNNs Detection of early GON Liu et al. [22]
DL Predict referable GON Phene et al. [23]

CNNs Predict the risk of glaucoma development. Thakur et al. [27]
ViTs Classification of glaucoma Tohye et al. [26]

CNNs Discover new glaucoma-related genetic loci Han et al. [29], Alipanahi et al. [30]

OCT
ChatGPT-4 Detection of glaucoma AlRyalat et al. [32]
PointNet Detection of glaucoma Thiéry et al. [24]
3D CNNs Detection of glaucoma Noury et al [25]

Molecular Genetic
Data ML Identify key candidate genes. Dai et al. [28]

Clinical Cases ChatGPT Detection of glaucoma Delsoz et al. [31]
Glaucoma
Diagnosis Cup-to-disc ratio retinIA Diagnosis of suspected glaucoma Camacho et al. [33]

Predicting
Glaucoma

Progression

OCT
LSTM Predict glaucoma progression Mandal et al. [38]
GTNs Identify visual field progression. Hou et al. [39]

- Siamese Neural
Network Identify rapid visual field progression Mohammadzadeh et al. [40]

Visual Field AI-driven dashboard Predict glaucoma progression Yousefi et al. [41]

clinical data Convolutiona l LSTM
Network Predict glaucoma progression Dixit et al. [42]

EHRs ChatGPT-4 Accuracy in predicting conversion of ocular
hypertension to glaucoma Huang et al. [43]

Guiding
Glaucoma
Treatment

EHRs Random Forest Model
Predict trabeculectomy outcomes Banna et al. [46]
Predict glaucoma surgery failure. Barry et al. [47]

Anterior Segment OCT Classification Tree Predict filtering surgery outcomes. Agnifili et al. [48]

Slit Lamp Images Residual Network Differentiate the filtration bleb function after
trabeculectomy Mastropasqu a et al. [49]

Clinical Cases ChatGTP Predict optimal surgical approach Carlà et al. [52]

Molecular Databases LLMs
Identify potential therapeutic targets and search

for
possible drug

Tu et al. [56]

- - - candidates -

Glaucoma
Chronic Disease
Managemen t

EHRs and Imaging LLMs Serve as a glaucoma “health advisor Bahir et al. [62]
Self-reported Data XGBoost Assess high-risk glaucoma patients Ravindranath et al. [66]

EHRs CNNs Identify high-risk glaucoma patients Ravindranath et al. [67]
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Fig.(1). Applications of AI in glaucoma management.

2.1.  AI  for  Early  Screening  and  Detection  of
Glaucoma

Early  screening  and  detection  are  cornerstones  of
glaucoma management, and AI plays a crucial role in this
process, primarily through image analysis and molecular
genetic  data  mining.  In  fundus  photography–based
detection, DL techniques, especially convolutional neural
networks (CNNs), effectively identify glaucomatous optic
neuropathy (GON) from fundus images. Liu et al. reported
that  CNNs achieved an AUC of  0.996 in  detecting GON,
demonstrating  high  sensitivity  and  specificity  [22].
Similarly,  Phene  et  al.  utilized  a  DL  model  to  analyze
fundus  photographs  from  primary  care  settings  and
predict  referable  GON  patients  with  an  AUC  of  0.945,
exhibiting higher sensitivity and comparable specificity to
glaucoma specialists [23].

AI  is  also  increasingly  applied  to  OCT  analysis.  DL
models  can  effectively  identify  glaucoma  by  analyzing
retinal  nerve  fiber  layer  (RNFL)  thickness,  optic  disc
structure, and OCT angiography data. Thiéry et al. showed
that DL models such as PointNet achieved an AUC of 0.95
for glaucoma diagnosis based on optic nerve OCT images,
indicating high accuracy [24]. Noury et al. used 3D CNNs
to  analyze  optic  nerve  OCT  from  different  datasets  and
consistently  demonstrated  high  accuracy  in  glaucoma
identification [25]. In addition, emerging architectures like
Vision Transformers (ViTs) show promising applications in

glaucoma management. Tohye et al. reported an accuracy
of 93%, significantly outperforming conventional methods
[26].

These  AI  systems  exhibit  a  remarkable  capacity  to
identify  subtle  structural  changes  that  are  often
imperceptible  to  the  human  eye.  Beyond  detection,  they
also  help  predict  the  risk  of  glaucoma  development,
enabling  truly  early  identification.  As  shown  in  Thakur’s
research,  their  DL  model  achieved  an  AUC  of  0.77  in
predicting glaucoma development 4 to 7 years before onset
and an AUC of 0.88 in predicting development 1 to 3 years
prior to onset [27].

AI further demonstrates immense potential in molecular
genetic  data  analysis.  ML  algorithms  have  successfully
analyzed  RNA sequencing  data,  identifying  key  candidate
genes  associated  with  glaucoma,  such  as  ENO2,  NAMPT,
and ADH1C [28]. Furthermore, researchers have advanced
large-scale  genome-wide  association  studies  through  DL-
assisted phenotyping of fundus images (e.g., quantifying the
vertical cup-to-disc ratio). As shown in research by Han [29]
and  Alipanahi  et  al  [30],  AI  models  aided  in  discovering
multiple new genetic loci related to optic disc morphology
and glaucoma susceptibility, providing crucial insights for
unraveling  disease  pathogenesis  and  identifying  novel
biomarkers.

LLMs  are  also  increasingly  applied  in  glaucoma
detection.  They  can  analyze  text  information  from  EHRs
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and, when combined with image recognition systems, can
assist in interpreting fundus photographs, visual field tests,
and OCT images for early identification of glaucoma. One
study  reported  that  ChatGPT achieved  72.7% accuracy  in
diagnosing  glaucoma  from  detailed  clinical  cases,
occasionally outperforming senior ophthalmology residents
[31].  Another  study  based  on  ChatGPT-4  achieved  a
diagnostic  accuracy  of  90%  [32].

The  application  of  AI  in  glaucoma  management  is
shifting  the  model  from  “passive  diagnosis”  to  “active
warning” by identifying high-risk individuals and predicting
disease  risk,  thereby  establishing  a  strong  foundation  for
early intervention.

2.2. AI for Improving Glaucoma Diagnostic Accuracy
Enhancing diagnostic accuracy is a core component of

glaucoma management,  and AI models play a significant
role  in  improving  both  the  precision  and  efficiency  of
glaucoma  diagnosis.  A  comparative  study  demonstrated
that  the  AI  tool  retinIA  outperformed  ophthalmology
residents in diagnosing suspected glaucoma and in cup-to-
disc ratio estimation [33].

Crucially, the study also emphasized that a synergistic
approach  combining  AI  assessment  with  clinician
judgment yields higher sensitivity in glaucoma diagnosis
compared to either method alone. This finding highlights a
central role of AI in medicine [34]: it serves as a powerful
assistive tool, providing objective, consistent, and accurate
analyses  to  augment—rather  than  replace—human
expertise. This is particularly beneficial for clinicians with
less  experience  or  those  working  in  high-intensity
environments  [35].

Furthermore,  the  continuous  optimization  and
increasing accessibility  of  AI  offer  new opportunities  for
clinicians  in  resource-limited  primary  care  settings,
enabling them to diagnose glaucoma more efficiently and
accurately [36]. This ability of AI to bridge knowledge and
resource gaps effectively democratizes access to high-level
diagnostic  capabilities  that  might  otherwise  be
concentrated  in  specialized  centers,  thereby  improving
patient  outcomes  in  underserved  areas.

2.3. AI for Predicting Glaucoma Progression
Predicting  disease  progression  is  a  critical  aspect  of

glaucoma management. In recent years, AI technologies,
including complex architectures such as Recurrent Neural
Networks (RNNs) and transformer models, have excelled
at  analyzing longitudinal  data  from OCT and visual  field
examinations, enabling relatively accurate predictions of
disease progression and trajectory [37].

Long Short-Term Memory (LSTM) networks, a type of
RNN, can differentiate whether RNFL thinning observed
on  OCT  is  due  to  glaucoma  progression  or  age-related
changes.  Mandal  et  al.  [38]  reported  that  this  model
achieved a diagnostic efficacy of AUC 0.498 in identifying
such  changes.  Gated  Transformer  Networks  (GTNs)
demonstrate  significant  advantages  in  predicting  visual
field damage based on OCT; a study by Hou et al. showed
an AUC of 0.97 [39]. Siamese Neural Networks, primarily

used  for  comparing  paired  data,  can  predict  visual  field
progression by  analyzing optic  disc  images  and baseline
RNFL thickness. In a study by Mohammadzadeh et al., this
AI  model  achieved  an  AUC  of  0.911  in  identifying  rapid
visual field progression [40].

To  further  enhance  clinical  utility,  AI-driven
dashboards  are  being  developed  to  provide  physicians
with  intuitive  visual  representations  of  visual  field
progression. Research by Yousefi et al. supports their high
sensitivity and specificity in predicting disease progression
[41].  Additionally,  AI  models  that  combine  clinical  data
(such as cup-to-disc ratio, central corneal thickness, and
intraocular  pressure)  with  visual  field  information  have
shown  strong  predictive  accuracy.  In  a  study  by  Dixit,
their predictive performance reached an AUC of 0.89–0.93
[42].

LLMs  uniquely  process  patient  text  information,
simulating the thought process of  experienced clinicians
by  integrating  imaging,  functional  assessments,  and
medical  symptoms  to  help  identify  potential  glaucoma
risks  [43].  Combining  LLM-driven  text  analysis  with  DL-
driven  image  analysis  enables  the  development  of
multimodal  AI  models,  contributing  to  a  more
comprehensive  and  detailed  diagnostic  and  prognostic
evaluation  system  [37].

The  application  of  these  AI  models  in  predicting
glaucoma progression will further drive the transformation
of  glaucoma  management  from  a  “reactive  treatment”
approach  to  a  “proactive  intervention”  model,  laying  a
solid  foundation  for  optimizing  long-term  patient
management  strategies  and  improving  quality-of-life
outcomes.

2.4. AI for Guiding Glaucoma Treatment
Beyond  screening,  detection,  diagnosis,  and

prediction, AI is widely applied in glaucoma treatment. It
guides treatment decisions, predicts treatment responses,
accelerates  drug  discovery,  and  even  improves  surgical
precision,  thereby  advancing  glaucoma  management
towards  more  personalized  and  efficient  directions.

2.4.1. AI for Predicting Treatment Response
Determining the most suitable treatment plan for each

patient  is  a  key  aspect  of  glaucoma  management  [44].
Currently, many AI models under development can predict
glaucoma treatment responses by analyzing diverse data
sources  (e.g.,  EHRs,  OCT,  visual  fields,  and  IOP)  [45].
Several ML models are also used to predict outcomes of
glaucoma filtering surgery. For instance, Banna et al. [46]
found that random forest models achieved an AUC of 0.74
in predicting trabeculectomy outcomes, while Barry et al.
[47]  demonstrated  their  superior  performance  in
predicting  glaucoma  surgery  failure.

Additionally,  AI  can  support  surgical  prognosis  by
analyzing specific anatomical features. For example, Agnifili
et  al  [48].  predicted  filtering  surgery  outcomes  by
classifying  conjunctival  stromal  thickness  measured  by
anterior  segment  OCT  using  decision  tree  analysis,
achieving  an  AUC  of  0.784.  Mastropasqua  et  al  [49]
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assessed  the  function  of  filtration  blebs  after  trabecu-
lectomy  using  ResNet  to  analyze  slit-lamp  examination
images, achieving an accuracy of 74%. These advancements
indicate  that  AI  can  support  prognostic  assessment  in
glaucoma surgery, helping optimize treatment choices and
facilitate  the  development  of  personalized  glaucoma
treatment  plans.

2.4.2. AI for Guiding Treatment Decisions
LLMs  are  capable  of  processing  complex  text  and

identifying  key  patient  information  from  EHRs,  thus
gradually becoming important auxiliary tools in developing
treatment  plans  and  clinical  decisions  [50,  51].  For
example, ChatGPT predicts the optimal surgical approach
for  patients  by  analyzing  clinical  cases,  achieving  an
accuracy  of  78%  and  often  demonstrating  predictive
ability comparable to glaucoma experts [52]. Furthermore,
LLMs can  serve  as  dynamic  knowledge  bases,  providing
the  latest  medical  evidence  to  support  evidence-based
medicine  decisions,  helping  doctors  stay  updated  with
rapidly  evolving  treatment  perspectives.  As  “clinical  co-
pilots,”  these  AI  models  can  integrate  vast  amounts  of
patient clinical data with the latest medical knowledge to
assist  clinicians  in  making  complex  glaucoma  treatment
decisions [53, 54].

2.4.3. AI for Developing New Therapies
AI  also  holds  promising  prospects  in  new  drug

development,  capable  of  discovering  novel  drugs  for
glaucoma [55]. AI models such as LLMs and graph neural
networks  can  rapidly  analyze  vast  molecular  databases,
predict  intermolecular  interactions,  identify  potential
therapeutic  targets,  and  search  for  possible  drug
candidates.  A  typical  example  involves  AI  screening
compounds that target receptor-interacting protein kinase 3
(RIPK3),  an  enzyme  that  mediates  necroptosis  of  retinal
ganglion  cells  (RGCs).  With  AI,  Researchers  identified
HG9-91-01  as  a  promising  drug  candidate,  which  showed
protective effects on RGCs in preclinical studies [56]. This
undoubtedly  shortens  drug  screening  time  and  reduces
costs,  which  is  particularly  crucial  for  finding  new
neuroprotective  therapies  related  to  glaucoma.

2.4.4. AI for Optimizing Surgical Procedures
Currently, the application of AI in ophthalmic surgery is

still  in  its  early  stages  and  is  primarily  focused  on
optimizing  surgical  procedures  through  robotic-assisted
technology [57, 58]. Robotic platforms specifically designed
for  ophthalmic  microsurgery,  such  as  the  “Steady  Hand”
system and the “Intraocular Robotic Interventional Surgical
System  (IRISS),”  can  minimize  hand  tremors  and  enable
more  precise  manipulations,  thereby  improving  surgical
safety and effectiveness [59, 60]. The use of these systems
supports  the  broader  adoption  of  minimally  invasive
glaucoma surgeries (MIGS), which require a high degree of
dexterity.  Integrating  AI  with  these  robotic  platforms  is
expected to further refine surgical techniques and optimize
surgical outcomes.

Additionally, AI can serve as an important auxiliary tool
during  surgery.  Ahuja  et  al.  [61]  demonstrated  that

integrating  AI  with  imaging  tools  such  as  fundus
photography  and  OCT  provides  real-time,  high-resolution
image  analysis  and  guidance  for  surgeons,  greatly
enhancing  surgical  safety.

2.5. AI in Chronic Glaucoma Management
In recent years, AI systems such as LLMs and chatbots

have increasingly assumed the role of “health advisors” for
glaucoma  patients  [51,  54,  62].  They  simplify  complex
medical  literature,  extract  key  information,  and  make
intricate  medical  knowledge  more  accessible  to  patients
with  varying  levels  of  health  literacy.  Furthermore,
platforms  like  ChatGPT,  Gemini,  and  Bing  AI  provide
patients with basic glaucoma information, explanations of
medical terminology, and overviews of potential treatment
options through interactive Q&A sessions. They can also
generate personalized educational materials and tailored
medical consultations. The use of these AI tools enhances
the  efficiency  of  doctor-patient  communication  and
improves  patient  adherence,  enabling  patients  to  play  a
more active role in their own care.

However,  caution  is  warranted  with  these  “health
advisors,” as research indicates notable variability in their
accuracy,  completeness,  and  readability  [63].  Studies
suggest that patient education materials from professional
organizations  such  as  the  American  Academy  of
Ophthalmology  (AAO)  exhibit  higher  accuracy  and
readability compared to responses generated by AI tools
like ChatGPT [64, 65].

AI models also play an important role in glaucoma risk
assessment  by  assisting  in  the  identification  of  high-risk
populations. The XGBoost model [66] achieved an AUC of
0.890  in  assessing  glaucoma risk  based  on  self-reported
data,  while  a  one-dimensional  CNN model  [67]  achieved
an  AUC  of  0.863  in  accurately  identifying  glaucoma
patients  using  EHRs,  demonstrating  strong  predictive
performance.

The  introduction  of  AI  into  glaucoma  patient
management is reshaping the traditional two-party doctor-
patient  relationship  into  a  more  complex  three-party
relationship  involving doctors,  patients,  and AI.  This  shift
requires  clinicians  to  develop  new  communication
strategies  to  help  patients  understand  and  appropriately
integrate  AI-generated  information,  ensuring  that  AI
enhances  the  therapeutic  relationship  rather  than
complicating  it.

3. CHALLENGES IN AI APPLICATION
While  the  application  of  AI  in  glaucoma  management

holds  vast  promise,  it  also  faces  several  challenges,
including  issues  related  to  data  quality,  model  trans-
parency,  interpretability,  and  ethical  considerations.
Actively and comprehensively addressing these challenges
is  essential  to  fully  leverage  the  potential  of  these
technologies.

Developing robust AI models requires large quantities of
high-quality,  diverse  datasets,  yet  limited  data  and  poor
data  quality  remain  significant  obstacles  [68,  69].  For
instance,  in  prospective  hospital  studies  with  limited
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glaucoma subjects, small datasets can lead to “overfitting,”
wherein  models  over-adapt  to  training  data  and  perform
inaccurately  on  new  data.  Additionally,  variations  across
populations, imaging equipment, and acquisition protocols
increase  data  heterogeneity,  meaning  that  AI  models
trained  on  data  from  a  specific  institution  or  population
often  struggle  to  maintain  consistent  performance  in
different  environments.  Therefore,  rigorous  clinical
validation using diverse, multi-center datasets is imperative
to enhance model generalizability.

Moreover,  many  advanced  AI  models,  particularly
complex  DL  models,  are  difficult  for  clinicians  to  fully
understand and trust due to their “black box” nature [70].
The development of explainable AI (XAI) techniques, such
as Shapley Additive Explanations (SHAP), aims to improve
model  transparency  and  interpretability,  but  their
practical applicability and effectiveness in clinical settings
still  require  further  validation  [71].  Additionally,  LLMs
may exhibit “hallucinations,” generating information that
appears plausible but is incorrect, which poses significant
risks in clinical applications [72, 73]. Therefore, providing
accurate  training  data  and  rigorously  validating  AI-
generated  information  are  essential  to  prevent  the
dissemination  of  wrong  or  harmful  advice.

With respect to ethics, AI tools may heighten the risk
of  exposing  sensitive  patient  information,  making  strict
adherence to data privacy regulations crucial during their
use [74-76]. Accountability is also a key concern, requiring
clear  delineation  of  responsibility  when  AI  systems
contribute to patient harm: Is it  the AI vendor who built
the algorithm, the clinician who used the tool and acted on
its output, or the healthcare institution that deployed the
AI?  Establishing  clear  accountability  mechanisms  is
essential  for  building  trust  and  ensuring  patient  safety
[77].  Furthermore,  ensuring  that  AI  tools  perform  fairly
across  diverse  populations  is  critical  for  promoting
equitable access to AI-driven healthcare innovations and
reducing existing health disparities.

Given  the  current  limitations  of  artificial
intelligence—including  potential  biases,  the  “black  box”
nature of certain models, and the possibility of errors such
as hallucinations in large language models—maintaining a
“human-in-the-loop” approach is not merely a transitional
phase but an ethical and practical necessity. In this model,
clinicians  oversee  AI-generated  outputs,  evaluate
recommendations, and ultimately make clinical decisions.
This oversight serves as a crucial safeguard against risks
associated  with  AI  errors,  thereby  fostering  responsible
innovation  and  strengthening  trust  in  emerging  AI
technologies.

CONCLUSION
AI is profoundly reshaping glaucoma management. Its

exceptional  performance  in  image  recognition,  disease
prediction,  and  personalized  intervention  provides
powerful  support  for  clinical  decision-making,  patient
education, and long-term management, while also opening
new  avenues  for  novel  drug  discovery  and  treatment
optimization.  The  application  of  AI  models  is  poised  to

transform  glaucoma  management  from  traditional
“passive diagnosis” to “active early warning,” fostering a
more  predictive,  precise,  and  accessible  diagnostic  and
therapeutic paradigm.

Future development will focus on building multimodal
AI systems by integrating diverse data—including imaging,
functional assessments, genomics, EHRs, and patient self-
reports—to  achieve  multi-dimensional  modeling  and
dynamic  tracking  of  individual  patient  conditions.

As AI advances, the role of ophthalmologists will also
evolve—from  traditional  independent  clinicians  to  AI-
assisted  comprehensive  decision-makers.  Future  clinical
practice will emphasize physicians’ critical interpretation
of  AI  outputs,  integration  of  complex  clinical  scenarios,
and humanistic care in doctor-patient communication. This
“human–machine  collaboration”  model  will  enhance  the
safety and effectiveness of diagnosis and treatment while
enriching the medical profession with new dimensions.

In  conclusion,  the  integration  of  AI  is  ushering  in  a
new  era  of  glaucoma  management.  Only  by  consistently
advancing  technological  innovation  with  a  rigorous
scientific  attitude,  prudent  ethical  principles,  and  a
clinically oriented perspective can AI be truly transformed
into  a  powerful  driving  force  for  improving  the  entire
continuum  of  glaucoma  care.  Future  glaucoma
management  will  be  data-driven,  patient-centered,  and
technology-supported,  steadily  progressing  toward  more
precise, efficient, and personalized approaches.
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