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Abstract:
Refractive errors, including myopia, hyperopia, and astigmatism, can impair vision and require corrective solutions,
such as glasses, contact lenses, or surgical intervention. Photorefractive Keratectomy (PRK) and transepithelial PRK
(TPRK)  are  two  surface  ablation  laser  procedures  commonly  used  to  correct  refractive  errors  by  reshaping  the
cornea. PRK, a widely used technique, involves mechanical or alcohol-assisted removal of the corneal epithelium
before  applying  an  excimer  laser  to  ablate  the  stromal  tissue.  Although  effective,  PRK  is  associated  with  post-
operative  discomfort,  longer  recovery  times,  and  potential  consequences,  such  as  corneal  haze  and  regression.
Alternatively, TPRK, introduced as an advancement over PRK, utilizes an excimer laser for both epithelial removal
and  stromal  ablation  in  a  single  step,  eliminating  the  need  for  mechanical  scraping  or  alcohol  application.  This
technique reduces surgical time, minimizes epithelial trauma, and enhances healing, leading to faster visual recovery
and less post-operative pain. TPRK maintains similar efficacy to PRK while improving patient comfort and reducing
complications.  Despite  these  advantages,  both  procedures  have  contraindications  and  additional  postoperative
consequences. Moreover, Artificial Intelligence (AI) is increasingly shaping ophthalmology by enhancing diagnostic
precision  and  supporting  refractive  surgery  planning.  Machine  learning  models  contribute  to  improved  patient
selection, prediction of surgical outcomes, and refinement of procedures such as PRK and TPRK. In this review, we
compare visual and refractive outcomes, complications, and patient satisfaction between conventional PRK and TPRK,
while also addressing the emerging role of AI in corneal refractive surgery. Further well-designed studies are needed
to  establish  standardized  treatment  protocols  and  improve  patient-reported  clinical  outcomes,  such  as  corneal
stability and higher-order aberrations.
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1. INTRODUCTION
Refractive errors occur when the eye cannot properly

focus light, causing blurred vision1. This is commonly due
to myopia (nearsightedness),  hyperopia (farsightedness),
astigmatism, or presbyopia. Uncorrected refractive errors
may cause progressive vision loss, discomfort, headaches,
and  reduced  quality  of  life  [1,  2].  Factors  like  genetics,
aging,  and  environmental  influences  contribute  to
refractive errors [3]. Routine eye exams are essential for

early  detection  and  management,  reducing  the  risk  of
long-term visual impairment and associated difficulties in
daily activities. Although laser corneal refractive surgery
has  emerged  as  an  effective  alternative  to  optical
correction with glasses or contact lenses, a wide range of
surgical  techniques  has  been  developed  to  correct
refractive errors by removing corneal tissue and reshaping
the cornea [2, 3].  Surgical treatment offers a solution to
some of the limitations of spectacles and contact lenses,
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including the discomfort associated with glasses and their
impracticality  for  sports,  as  well  as  the  risk  of  corneal
infections  commonly  linked  to  contact  lenses.  Surface
corneal refractive surgery is a safe and effective option for
patients with epithelial basement membrane lesions and a
thin cornea with high myopia [4].  Excimer laser systems
have been widely utilized in various refractive procedures,
including Photorefractive Keratectomy (PRK), followed by
Laser  in  Situ  Keratomileusis  (LASIK),  Small  Incision
Lenticule  Extraction  (SMILE),  and  Transepithelial  PRK
(TPRK), demonstrating their versatility in vision correction
treatments [5]. The ongoing debate regarding the use of
various surgical procedures, particularly PRK and TPRK, is
well-documented  and  extensively  explored  in  the
literature.

This  review  provides  a  brief  overview  of  both
techniques,  discussing  technical  considerations,  contra-
indications,  and  emphasizing  postoperative  outcomes,
potential  complications,  management,  and  the  role  of
Artificial  Intelligence  (AI)-driven  technology.

2. METHODOLOGY
To  ensure  transparency  and  scientific  rigor,  we

conducted  a  narrative  review  on  Conventional  versus
Transepithelial  Photorefractive  Keratectomy:  Long-Term
Outcomes  and  the  Role  of  AI-Driven  Technology.  A  com-
prehensive search of PubMed, Scopus, and Web of Science
was  performed  up  to  July  2025.  The  search  strategy
combined  the  following  keywords  with  Boolean  operators
(AND/OR):  “Photorefractive  Keratectomy,  Transepithelial
Photorefractive  Keratectomy,  Contraindications,  Compli-
cations,  Treatment,  and  Artificial  Intelligence.”

Eligible  studies  included  original  research  articles,
reviews,  and  clinical  investigations  published  in  English
that addressed conventional versus transepithelial photo-
refractive  keratectomy,  long-term  outcomes,  and/or  AI
applications in this field. Screening was conducted based
on titles  and abstracts,  followed by  full-text  assessment.
Studies unrelated to the comparative long-term effects of
the  two  procedures  or  lacking  relevance  to  AI-driven
technologies  were  excluded.

Selected  articles  were  analyzed  qualitatively  with
emphasis  on  mechanistic  insights,  clinical  relevance,  and
therapeutic  outcomes.  Findings  were  categorized  into
thematic  sections  covering  surgical  techniques,  post-
operative effects, and complications. As this is a narrative
review, no meta-analytical methods were applied.

2.1.  Technical  Considerations  and  Surgical
Procedures

PRK is  a common surface ablation technique used to
correct refractive errors, such as myopia and astigmatism,
by reshaping the cornea [6]. By eliminating the need for a
lamellar  flap  and  its  associated  risks,  this  procedure  is
especially  suitable  for  patients  with  thinner  corneas,
larger  pupillary  diameters,  and  low  to  moderate  myopia
[7].  By  modifying  the  corneal  curvature,  this  procedure
improves light focus on the retina, enhancing visual clarity
[8].  Unlike  LASIK,  in  PRK,  the  corneal  epithelium  is

manually removed (often with the aid of topical alcohol or
with  a  brush)  within  a  defined  diameter  that  accom-
modates  the  planned  ablation  zone.  This  is  followed  by
stromal ablation using the ultraviolet excimer laser beam
(193  nm  argon  fluoride)  applied  to  the  anterior  corneal
surface, reshaping its curvature to enhance light focus on
the  retina,  rather  than  creating  a  flap  [6,  9].  The
epithelium typically regenerates within a few days, leading
to  temporary  postoperative  discomfort.  In  some  cases,
healing  may  take  longer.  In  addition,  mild  subepithelial
opacities (known as corneal haze) may develop, potentially
affecting  both  the  quality  and  quantity  of  vision  [10].
Although this procedure has been studied since 1980, its
method  may  lead  to  epithelial  removal  with  an  uneven
edge and a larger area than necessary for proper stromal
exposure  [11-13].  Since  the  introduction  of  PRK,  the
procedure  and  laser  technology  used  have  been
substantially  improved.  Many  techniques  have  been
developed,  adopted,  and  added  to  PRK,  including  laser-
diluted alcohol and a rotating brush [7]. A technique using
an alcohol  solution for epithelium removal,  called Laser-
Assisted  Sub-Epithelial  Keratectomy  (LASEK),  was
introduced  as  a  modification  of  PRK  to  speed  up  the
healing  process  and  improve  stromal  hydration  [9,  14].
The  alcohol  solution  used  in  the  procedure  assists  in
loosening  the  corneal  epithelium  before  lifting  the  flap,
rather than removing it entirely [14]. After laser ablation,
the epithelial flap is repositioned, promoting faster healing
and  less  pain  compared  to  conventional  PRK.  Although
PRK is beneficial for patients with thin corneas or those at
risk  for  flap  complications,  it  may  cause  pain  after
surgery, slow epithelial healing, longer recovery time, and
corneal  haze  when  compared  to  LASIK  [15,  16].  An
enhancement to this technique involved using an excimer
laser  to  remove  the  epithelium,  followed  by  refractive
stromal ablation in a seamless, no-touch approach known
as transepithelial PRK.

Transepithelial  PRK  (TPRK)  was  introduced  in  the
1990s [17]. It is an advanced version of PRK, designed to
improve  precision  and  patient  comfort  [18].  Unlike
conventional PRK, TPRK uses an excimer laser to perform
a  single-step  epithelial  removal  and  stromal  ablation,
ensuring  that  no  surgical  instruments  come  into  direct
contact  with  the  cornea  [19,  20].  This  ensures  uniform
ablation, reduces epithelial trauma, and potentially leads
to  faster  healing  and  less  post-operative  pain  [21].  The
procedure  underwent  several  modifications  to  reach  the
desired  refractory  correction  [22].  Both  PRK  and  TPRK
reshape  the  corneal  stroma  to  correct  refractive  errors,
with the choice of  procedure depending on the patient's
preferences  and  the  desired  correction  outcome.  Both
techniques  are  commonly  performed  yet  challenging
procedures,  and their effectiveness has been extensively
compared in the literature. The indications for TPRK are
similar  to  those  of  conventional  PRK  for  treating  both
moderate  and  high  levels  of  myopia  [8].  Although  the
value  of  a  250  μm  residual  stromal  bed  after  excimer
ablation in LASIK remains a historical reference, current
literature suggests that values above 275–300 μm may be
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safer.  However,  the  decision  should  be  based on  a  com-
prehensive assessment that includes corneal topography/
tomography,  the percentage of  tissue altered (PTA),  and
other  individual  risk  factors.  There  is  no  single  inter-
national  consensus,  and  the  recommendation  should  be
adapted  to  the  surgical  protocol  and  the  patient’s
individual  characteristics.  In  general,  however,  it  is
recommended that the maximum PTA limit should be 40%
[23].

Recently, TPRK has increasingly replaced conventional
PRK  due  to  its  non-contact,  fully  automated  approach,
improving  visual  recovery,  and  lowering  the  risk  of  post-
operative complications [21, 24-27].  Nevertheless,  patient
satisfaction  and  pain  relief  are  considered  the  most
challenging issues to address, as well as the advantages and
disadvantages  of  these  procedures.  One  of  the  common
advantages of TPRK is that the procedure can be beneficial
for  corneas  affected  by  previous  surgeries,  such  as
keratoplasty  and  keratotomy  [28].  Astigmatism  occurring
after keratoplasty and treated with LASIK frequently causes
refractive regression, corneal stromal haze, and perforation
[7]. However, TPRK in post-keratoplasty or keratotomy was
found to be a safe and effective procedure [7].

2.2. Procedural Contraindication
Contraindications  to  PRK  and  TPRK  include  systemic,

ocular,  and  corneal  factors  that  may  impair  healing  or
increase  surgical  risks  [18].  Systemic  conditions  include
rheumatoid  arthritis  and  uncontrolled  diabetes  mellitus.
Ocular  contraindications  involve  acute  inflammatory
infection  of  the  cornea,  a  previous  history  of  herpes
keratitis,  and  unstable  refraction  in  young  or  progressive
myopic  patients,  as  well  as  reduced  corneal  thickness,
stromal scarring, vascularization, and ectatic conditions like
keratoconus.  Hormonal  fluctuations,  such  as  those  that
occur  during  pregnancy,  may  cause  refractive  changes.
Additionally, uncontrolled glaucoma and steroid responders
pose  risks  after  chronic  steroid  use  required  to  treat
corneal  haze  [18].  Moreover,  treatment  of  lower-order
refractive errors may cause higher-order abnormalities that
decrease visual acuity [29].

2.3.  Preoperative  Assessment  and  Procedure
Selection

Proper  preoperative  assessment  and  postoperative
management are crucial for achieving optimal outcomes in
PRK  and  TPRK.  Before  surgery,  a  comprehensive  eye
examination is performed, including corneal topography,
pachymetry,  and  refraction  assessment  to  determine
patient  eligibility.  Patients  with  thin  corneas  or  high
myopia may benefit from surface ablation techniques, such
as  PRK  or  TPRK  [24].  The  procedure  choice  is  optional,
based on the patient's desire, risk, and eligibility. Whether
using PRK or TPRK, the choice between them became an
interesting research and treatment challenge.

Initially,  the  TPRK  2-step  technique  was  introduced
worldwide;  however,  it  was  not  commonly  used  due  to
prolonged  surgery  times  with  the  older  generation  of
lasers, corneal dehydration, increased postoperative pain,

and  a  deficiency  in  adjusted  nomograms  [30,  31].  When
new generations emerged, a new TPRK non-touch surface
ablation  procedure  was  developed,  allowing  for  corneal
epithelial  and  stromal  ablation  in  a  single  step  [32].
Single-step TPRK is a recently developed procedure that
offers  several  benefits,  including  shorter  surgery  time,
minimized  epithelial  defects,  elimination  of  alcohol  use,
reduced postoperative pain, a lower risk of corneal haze,
accelerated  healing,  and  faster  visual  recovery  [25,  26,
33]. The Schwind Amaris system (Kleinostheim, Germany)
integrates  PRK  into  a  single-step  reverse  PRK,  enabling
precise  correction  in  a  streamlined  approach  [25].  The
“Smart Pulse” ablation program (Kleinostheim, Germany)
also  employs  various  ablation  spots  to  minimize  thermal
load and enhance the softness of the ablation bed [34]. A
retrospective study found that this approach can lead to a
faster  recovery,  less  pain  during  the  initial  days,  and  a
minor incidence of stromal haze [25]. The Alcon Stream-
light,  added  to  the  EX500  Excimer  laser  in  2019,  is  a
single-step  TPRK  platform  for  precise  ablation  in  5μm
steps, adjusting to corneal thickness while maintaining a
refractively neutral approach [35]. Similar to the Schwind
program,  there  is  no  disruption  between  epithelial  and
stromal ablations, which reduces treatment time.

Postoperatively, corneal epithelial healing is monitored
using serial imaging of the corneal epithelial defect (CED)
[36]. Pain, discomfort, and inflammation are managed with
bandage  contact  lenses,  topical  antibiotics,  cortico-
steroids,  and lubricants.  Patients  are assessed for  visual
recovery, refractive stability, and potential complications,
such  as  corneal  haze.  Healing  times,  pain  levels,  and
epithelial regeneration rates vary between PRK and TPRK,
influencing postoperative care and patient experience.

2.4.  Postoperative  Consequences  in  PRK  versus
TPRK

Postoperative  consequences  or  complications  related
to  surface  ablation  are  frequently  observed  in  patients
undergoing  refractive  keratectomy.  However,  surface
ablation is considered a safer option as it  eliminates the
risk of flap-related complications, corneal fading, and the
increased likelihood of  keratectasia.  As  a  result,  surface
ablation has emerged as a viable alternative [37]. One of
the  common  problems  associated  with  PRK  is  under-
correction  and  refractive  regression  [38].  Primary
undercorrection  is  influenced  by  epithelial  and  stromal
healing,  axial  and  lenticular  myopia,  corneal  reshaping,
and  hormonal  changes  from  pregnancy  or  endocrine
disorders  [39].  The  percentage  of  patients  who  require
redo  surgery  after  the  first  correction  with  an  excimer
laser  is  about  7% [40].  PRK for  residual  refractive  error
after  LASIK  shows  outcomes  comparable  to  PRK  on
untreated  eyes  by  six  months  [40].  Early  differences  in
higher-order  aberrations  and  achieved  MRSE  were
observed  in  hyperopic  post-LASIK  cases,  but  these
differences  diminished  over  time.  Importantly,  PRK
represents  a  safe  and  effective  option  for  post-LASIK
corrections,  thereby  avoiding  the  risks  associated  with
repeat  LASIK,  including  flap-related  complications.
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Table  1.  The characteristic  patterns and the differences between conventional  photorefractive  keratectomy
(PRK) versus transepithelial photorefractive keratectomy (TPRK).

Feature Conventional PRK Transepithelial PRK (TPRK)

Surgical Procedure Epithelial removal with alcohol or a rotating brush, followed
by laser ablation

No-touch surface ablation without alcohol or mechanical
scraping

Flap Creation No flap creation, surface ablation No flap creation, surface ablation
Epithelium Removal Manually removed using alcohol or a mechanical brush Removed and ablated in a single-step laser procedure
Surgical Time Longer, requires separate epithelium removal Faster, performed in a single laser step
Alcohol Use Often requires alcohol to loosen the epithelium No alcohol used
Recovery Time Longer initial recovery (several days to weeks) Faster recovery than conventional PRK but longer than LASIK
Postoperative Pain More discomfort due to full epithelium removal Less pain due to a smaller epithelial defect
Corneal Haze Risk Higher risk compared to TPRK Lower risk, but still present in some cases
Dry-Eye Symptoms Less dry-eye symptoms than with LASIK Similar to conventional PRK, but with less discomfort overall
Suitability for Thin Corneas May be suitable May be suitable
Enhancement Procedures Possible Possible
Overall Vision Quality Excellent, but takes longer to stabilize Excellent, but may take longer to stabilize

As such, PRK is often favored as a redo surgery technique,
offering stable long-term results and maintaining corneal
integrity  while  effectively  addressing residual  myopia  or
hyperopia.

Furthermore,  the  potential  development  of  corneal
opacity  (haze)  is  a  significant  limitation  of  PRK  and  a
notable  long-term  complication.  Haze  formation  is  influ-
enced  by  deeper  ablation  for  high  myopia,  epithelial
basement membrane integrity, and abnormal extracellular
matrix  deposition  during  corneal  healing  [41].  The
differences between the two procedures in terms of effect,
consequences,   and   complications   are   summarized   in
Table 1.

In 2013, a meta-analysis by Shortt et al. concluded that
LASIK  provides  faster  recovery  and  greater  comfort  but
carries risks related to flap creation and ectasia. PRK avoids
flap complications and ectasia but is associated with slower
recovery, more postoperative discomfort, and a higher risk
of  corneal  haze  unless  mitigated  with  Mitomycin  C  [42].
Retreatment  may  be  needed  due  to  decentration,  small
optical  zone,  or  aberrations  [7].  Another,  less  frequent,
long-term  complication  that  can  be  induced  by  PRK  is
corneal  ectasia.  The  risk  of  ectasia  is  lower  after  surface
ablation  compared  to  LASIK.  A  literature  review  by
Randleman et al. (1997–2005) found that 95% of reported
ectasia cases followed LASIK, while only 4% occurred after
surface ablation [40]. A recent meta-analysis by Alasbali et
al. included 957 patients and compared visual and patient-
reported outcomes between the two procedures [3]. More
than  12  published  studies  from  2016  to  2023  have
examined  the  outcomes,  as  documented  by  Alasbali  et  al
[3].  Their  findings  suggest  that  TPRK  demonstrates
superiority  over  conventional  PRK  in  terms  of  procedural
accuracy  and  a  lower  incidence  of  postoperative
complications,  based  on  predictive  outcome  measures.
Single-step  TPRK  was  associated  with  faster  epithelial
healing and reduced pain after surgery compared to PRK,
while  the  rate  of  postoperative  corneal  haze  remained
similar [3, 43]. The reduction in pain is likely multifactorial
and  may  be  attributed  to  faster  re-epithelialization.  This
occurs  because  TPRK  removes  a  smaller  epithelial  area

compared  to  conventional  methods,  which  is  present  in
alcohol-assisted PRK [44]. Although surgical outcomes have
been addressed, their relationship with patients' outcomes
is  less  discussed [45].  Among the studies  reviewed in  the
Alasbali analysis [3], only two examined patient satisfaction,
both of which reported higher satisfaction with TPRK [11,
46].

Gadde  et  al.  also  compared  the  uncorrected  visual
acuity (UCVA) after surgery with corrected visual  acuity
(CVA) post-surgery between TPRK and PRK in 59 patients
[9]. Both procedures showed similar visual outcomes over
3.5 months,  but TPRK had a higher incidence of  corneal
haze. Similarly, Bakhsh et al. reported comparable efficacy
between  PRK  and  TPRK  at  6  months,  Antonios  et  al.
confirmed similar findings at 12 months, and Rodriguez et
al.  published the longest follow-up to date (mean 35.2 ±
5.0  months,  range  30–46  months),  also  reporting
comparable results [11, 47, 48]. Ghobashy et al. reported
that  TPRK  can  be  a  safer,  less  painful,  and  effective
alternative to PRK [49]. The transepithelial group achieved
complete healing in an average of 2.5 days, compared to
3.7 days in the conventional PRK group [27]. Two studies
performed  by  Ellakava  et  al.  and  Ghobashy  et  al.  found
favourable  outcomes  with  TPRK,  whereby  the  healing
process  was  faster  and  pain  was  less  [49,  50].  Visual
recovery is slower, often taking weeks for full stabilization.
There is a higher risk of corneal haze, especially in high
myopia  cases,  and  an  increased  chance  of  infection  or
inflammation  due  to  delayed  epithelial  healing  [3,  51].
Patients  must  use  bandage  contact  lenses  and  follow  a
strict postoperative medication regimen. Additionally, PRK
requires  more  downtime,  making  it  less  convenient  for
those needing a quick recovery.

A study by Naderi et al. in 2016 compared TPRK and
PRK for low to moderate myopia [52]. Among 170 patients,
TPRK demonstrated lower postoperative pain (p = 0.04),
faster  epithelial  healing,  and  better  visual  acuity  at  two
months.  Additionally,  safety  and  efficacy  indexes  were
significantly better in TPRK, suggesting its superiority in
terms of patient comfort and visual recovery. On the other
hand,  Hashemi et  al.  conducted a  similar  study in  2022,
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comparing  TPRK,  mechanical  PRK  (mPRK),  and  alcohol-
assisted PRK (aaPRK) in terms of epithelial healing, pain,
and visual outcomes [24]. While all three techniques were
effective, conventional PRK exhibited a faster healing rate
relative to the initial defect area, whereas TPRK patients
reported less postoperative pain and discomfort,  despite
similar  overall  healing  times.  Both  studies  confirm  that
TPRK  is  a  safe  and  effective  alternative  to  PRK,  with
Hashemi  et  al.  [24]  highlighting  the  healing  rate
differences,  while  Naderi  et  al.  [52]  emphasized  the
advantages  of  TPRK  in  reducing  pain  and  accelerating
recovery. Patient satisfaction is increasingly recognized as
a  critical  measure  of  refractive  surgery  success.  The
limited evidence available suggests that TPRK provides a
more comfortable postoperative experience, largely due to
reduced  pain  and  faster  recovery.  Patients  undergoing
TPRK  reported  higher  satisfaction  compared  to  conven-
tional PRK, reflecting not only improved visual outcomes
but  also  enhanced  quality  of  life  during  the  healing
process. Although current data are scarce, these findings
emphasize  the  need  for  more  systematic  evaluations  of
patient-reported outcomes to validate TPRK’s advantages
in clinical practice.

Other  rare  postoperative  consequences  are  bio-
mechanical  stability  and  wave-front  guided  aberrations.
Corneal laser refractive surgery may cause biomechanical
instability,  increasing  the  risk  of  post-surgical  corneal
ectasia [40]. While factors such as a low residual stromal
bed and high tissue removal contribute to this condition,
some cases develop years later without a clear cause [23].
Xin  et  al.  compared  corneal  stiffness  after  TPRK  and
LASIK, finding that both techniques reduce stiffness [53].
However, TPRK resulted in the least reduction, suggesting
it may better preserve corneal biomechanics compared to
other  techniques,  potentially  reducing  the  risk  of  long-
term structural complications. TPRK was also associated
with a higher incidence of high-order aberrations (HOAs)
than  conventional  PRK  [19].  Chen  et  al.  [44]  observed
HOAs  in  TPRK  compared  to  lenticular  extraction,  even
with  wavefront-guided  (WFG)  treatment.  However,  in
patients with pre-existing high HOAs, WFG TPRK did not
significantly  elevate  HOAs  compared  to  aberration-free
treatments  [54].

2.5. Management of Postoperative Complications
The management of postoperative corneal pain, corneal

haze, corneal ectasia, and wavefront-guided aberrations is a
widely studied topic in the literature. These complications
are common with PRK than with TPRK. Postoperative pain
management  following  PRK  or  TPRK  involves  various
strategies to enhance patient comfort and promote healing
[18].  Topical  nonsteroidal  anti-inflammatory  drugs
(NSAIDs)  like  nepafenac  0.1%  and  ketorolac  0.4%  have
been shown to provide effective pain relief without hinde-
ring  corneal  epithelial  healing  [55].  Additionally,  gaba-
pentin  has been evaluated as  an alternative to  traditional
analgesics.  A  study  comparing  gabapentin  to  oxycodone/
acetaminophen  found  no  significant  difference  in  overall
pain  management  ratings  between  the  two  groups,
suggesting  gabapentin's  viability  as  a  postoperative  pain

management option [56]. In clinical practice, high-volume
PRK  surgeons  often  employ  a  combination  of  topical
steroids,  NSAIDs,  and  soft  contact  lenses  immediately
postoperatively  to  manage  pain  and  facilitate  healing.
Corneal haze is a significant complication following surface
ablation  procedures  like  PRK.  Heitzmann’s  1993  grading
system classifies corneal haze from grade 0 (clear cornea)
to  grade 5  (severe  opacity)  [56].  Grades  0–2  are  typically
treated  with  topical  steroids,  though  their  long-term
efficacy remains controversial due to potential side effects
like  increased  intraocular  pressure  (IOP)  [7].  More
advanced  haze  (grades  2–4)  may  require  mechanical
epithelial debridement or laser scraping. Phototherapeutic
keratectomy  (PTK)  combined  with  mitomycin-C  (MMC)
application has proven effective in reducing corneal opacity
[7].

Dry  eye  syndrome,  commonly  observed  after  PRK,
must  be  promptly  managed  to  maintain  visual  quality.
Treatment  includes  preservative-free  artificial  tears,
cyclosporine drops, and management of lid disease [7, 42].
It  has  been  demonstrated  that  punctal  plugs  improve
visual  acuity  in  patients  with  lower  refractive  errors.
Corneal  ectasia  after  refractive  surgery  has  been
traditionally managed with rigid gas-permeable lenses and
intracorneal ring segments [57]. In comparison, literature
on TPRK suggests a similar approach for managing haze,
with the added benefit  of  less postoperative haze due to
the  single-step  epithelial  removal  technique  [18].  TPRK
patients experience fewer complications and require less
aggressive  interventions,  highlighting  its  advantage  in
reducing corneal haze and enhancing long-term outcomes.

HOAs can be treated through wavefront-guided retreat-
ment.  Utilizing  corneal  elevation  data  from  topography,
along with clinical information, allows for the development
of customized treatments aimed at minimizing second-order
aberrations and higher-order aberrations (HOAs). Research
has demonstrated that wavefront-guided retreatments can
effectively reduce HOAs and corneal spherical aberrations,
thereby enhancing visual acuity [6]. By analyzing how the
optical  system  modifies  an  incoming  wavefront  of  light,
wavefront  aberrometry  can  identify  subtle  ocular
aberrations.

2.6. AI-Driven Technology in PRK and TPRK Ablation
The  potential  of  AI  in  ophthalmology  continues  to  be

explored, demonstrating its capacity to revolutionize vision
care [58].  While  AI  is  not  expected to replace ophthalmo-
logists,  it  has  the  potential  to  augment  patient  care  by
improving diagnostic performance and predicting possible
outcomes.  AI  has  already  been  applied  in  detecting  and
managing  conditions,  such  as  diabetic  retinopathy,  age-
related  macular  degeneration,  glaucoma,  and  cataracts,
with ongoing research into its role in corneal disorders [59].
Research efforts are increasingly focusing on enhancing AI-
driven  screening  and  grading  of  diseases  in  clinical
settings, aiming for higher accuracy and efficiency. Various
machine learning (ML) algorithms have been developed to
identify  eyes  with  preclinical  or  subclinical  keratoconus
[60],  enabling  early  detection  of  corneal  ectasias  before
refractive surgery and identifying cases where surgery may
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be  contraindicated  [61].  A  model  trained  on  preoperative
data from 10,500 eyes achieved 94% accuracy in predicting
refractive  surgery  suitability,  including  procedures  like
laser-assisted  epithelial  keratomileusis  (LASIK)  and  small
incision lenticular extraction (SMILE) [62]. AI, designed to
mimic human cognitive processes, has evolved significantly
from  early  rule-based  models  that  relied  on  predefined
expert  knowledge.

The  introduction  of  convolutional  neural  networks
(CNNs)  in  2012,  proposed  by  LeCun  et  al.,  marked  a
technological breakthrough, enabling deep neural networks
to  achieve  state-of-the-art  performance  in  imaging  appli-
cations  [63].  CNNs automatically  learn  multiscale  feature
representations  by  applying  convolutional  filters  and
nonlinear activation functions to images at various scales,
refining  their  weights  during  training  through  iterative
backpropagation.  Convolutional  layers  enhance  specific
features in an image, while pooling layers perform dimen-
sionality  reduction  to  optimize  computational  efficiency
[64]. These advancements have made AI highly effective in
diagnosing various  corneal  disorders,  including infectious
keratitis (IK), keratoconus, pterygium, endothelial diseases,
and complications related to corneal grafts [64]. Given the
increasing  demand  for  optimal  visual  and  refractive
outcomes  with  minimal  postoperative  complications,  AI
research  in  refractive  surgery  has  gained  momentum,
particularly in preoperative risk assessment for post-laser
corneal  ectasia,  surgical  procedure  selection,  and  auto-
mated  refraction.  Utilizing  Orbscan  II  tomography,  Saad
and Gatinel developed a linear discriminant model with 93%
sensitivity  and  92%  specificity  in  detecting  post-LASIK
ectasia  [65].  Building  on  this  foundation,  subsequent
research  has  integrated  advanced  corneal  imaging  moda-
lities,  such as Scheimpflug tomography,  anterior  segment
OCT, and biomechanical assessments to further strengthen
ectasia  prediction.  Machine  learning  models,  including
random  forests  and  deep  neural  networks,  have
demonstrated superior accuracy by capturing complex, non-
linear  interactions  among  topographic  and  biomechanical
variables.  AI  has  also  been  applied  to  refine  surgical
procedure selection, guiding clinicians in choosing between
LASIK,  PRK,  or  SMILE  based  on  individualized  corneal
characteristics  and  risk  profiles.  Furthermore,  automated
refraction  systems  utilizing  AI-driven  algorithms  now
provide rapid and reproducible measurements that reduce
examiner  variability.  Collectively,  these  developments
highlight  AI’s  potential  to  enhance  surgical  safety,
personalize  treatment  planning,  and  improve  refractive
outcomes  for  patients  undergoing  corneal  laser  surgery.

Beyond  screening,  AI  has  been  employed  in  selecting
appropriate  refractive  surgery  types  and  optimizing
surgical nomograms. Yoo et al. developed a multiclass ML
model  that  categorized  patients  into  laser  epithelial
keratomileusis, LASIK, SMILE, and contraindication groups,
using data from 18,000 subjects. Their model achieved 81%
accuracy  in  internal  validation  and  79%  in  external
validation [62]. Similarly, Cui et al. developed an ML-based
nomogram  for  SMILE  surgery  to  achieve  precise  visual
outcomes, demonstrating that 93% of eyes in the ML-guided
group  had  a  postoperative  refractive  error  within  0.50D
compared  to  83%  in  the  surgeon-guided  group.  The  ML-

based  approach  also  showed  superior  safety  and  efficacy
indices  [66].  Given  the  variability  in  topographic  map
interpretation and differences between diagnostic devices,
AI-driven  case  selection  and  procedural  decisions  are
crucial  for  optimizing  surgical  outcomes.  Certain  organi-
zations  have  even  implemented  AI-based  screening  to
identify prior refractive surgery in potential employees or
recruits [67]. Moreover, AI models are being developed to
enhance  refractive  surgery  outcome  predictions,  where
performance  metrics  now  rival  those  of  experienced
surgeons in terms of safety, efficacy, and predictability. AI
can also assist in preventing miscalculations and optimizing
intraocular lens (IOL) power selection to minimize residual
refractive  errors  [68].  ML  techniques  applied  to  vast
corneal  examination  datasets  have  yielded  promising
results,  but  selecting  the  most  appropriate  indices  and
algorithms  remains  an  area  of  ongoing  research  [69].

More recently, large language models (LLMs), such as
Generative Pre-trained Transformer Version 4 (GPT-4) from
OpenAI, have garnered interest for their potential to serve
as  general  AI  across  multiple  disciplines  [70].  Unlike
domain-specific AI applications, LLMs dynamically adapt to
evolving knowledge bases and can process extensive textual
information, making them versatile tools for various appli-
cations.  While  preliminary  tests  have  assessed  LLMs  in
healthcare  scenarios,  their  capabilities  remain  under
scrutiny.  Some  studies  have  evaluated  ChatGPT-4’s  diag-
nostic  triage  abilities  against  other  AI-based  diagnostic
tools,  such  as  ChatGPT-3.5  and  Ada  (Ada  Health  GmbH),
revealing  that  ChatGPT-4  underperformed  in  comparison
[71]. Similarly, multiple recent studies indicate that while
ChatGPT exhibits some diagnostic capabilities, its reliability
remains inconsistent [72]. Known limitations include logical
inconsistencies,  hallucinations,  and  prompt-dependency,
raising concerns about its applicability in medical contexts.
Despite  these  shortcomings,  ChatGPT  and  other  large
language  models  continue  to  evolve,  with  newer  versions
showing improved accuracy, contextual understanding, and
reduced  hallucinations.  Integration  with  domain-specific
datasets and reinforcement learning from expert feedback
has been explored to enhance medical reliability. Moreover,
hybrid  approaches  combining  AI  outputs  with  clinician
oversight  are  being  proposed  to  mitigate  risks  while
leveraging  efficiency  in  tasks,  such  as  patient  education,
drafting  clinical  notes,  and  preliminary  triage.  Ethical
considerations, including patient privacy, data security, and
accountability,  remain  central.  Thus,  while  current  reli-
ability is limited, ChatGPT holds promise as a supportive—
not  standalone—tool  in  healthcare.  Circovic’s  study  on  AI
applications  in  refractive  surgery  examined  ChatGPT-4’s
ability  to  classify  patients  based  on  clinical  parameters
compared to an experienced refractive surgeon. Analyzing
data  from  100  patients,  the  study  found  moderate
agreement  between  AI  and  the  surgeon,  with  ChatGPT-4
performing  well  in  binary  categorization  but  exhibiting
variability in other cases [73].  Despite its  limitations,  this
study  emphasizes  AI’s  potential  in  refractive  surgery
decision-making, highlighting the need for further research
to  refine  its  applications.  As  AI  technology  continues  to
evolve,  its  integration  into  ophthalmology,  particularly
corneal  diagnostics  and refractive  surgery,  is  expected to
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advance,  leading  to  more  precise,  efficient,  and
personalized  patient  care.

CONCLUSION
PRK  and  TPRK  are  both  effective  surface  ablation

procedures for the correction of refractive errors, offering
established and safe alternatives to LASIK, particularly for
patients with thin corneas, irregular topography, or those
prone to flap-related complications. PRK has a long record
of safety and predictability, while TPRK offers additional
benefits, including improved precision of ablation, faster
epithelial healing, reduced postoperative discomfort, and
comparable visual and refractive outcomes. Nevertheless,
important  gaps  remain.  The  long-term  biomechanical
stability of the cornea following surface ablation requires
further  exploration,  particularly  in  younger  patients  or
those undergoing high corrections. Similarly, higher-order
aberrations remain a concern that may compromise visual
quality,  warranting  careful  long-term  monitoring.
Moreover, while AI-driven approaches, including machine
learning  algorithms,  are  increasingly  being  applied  for
ectasia  risk  assessment,  surgical  planning,  and  patient
counseling, their clinical reliability requires validation in
prospective, real-world trials. Addressing these gaps will
refine  patient  selection,  enhance  safety,  and  optimize
personalized  treatment  strategies  in  refractive  surgery.
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